
i

NASA-TM-]O_26Z

r

Maintenance Strategies for
Design Recovery and Reengineering

Volume 3
Methods

.'TA/#/- 7-/_

/2_ 37_

By: Dennis Braley and Allan Plumb

w

(NASA-TM-t08262) MAINTENANCE

STRATEGIES FOR DESIGN RECOVERY AND

REENGINEERING- VOLUME 3: METHODS

(NASA) 42 p

Z9161

N93-72514

Uncl as

0176378

June 1990

Review Copy

Software Technology Branch
Johnson Space Center
National Aeronautics and Space Administration

Houston, TX 77058

6/29/90 Revision 2

ACKNOWLEDGEMENTS

The authors wish to thank participants from The MITRE Corporation who helped in the
preparation of this document: Lois Morgan, who merged and edited several unpubLished
documents to form this document, Debra McGrath, who reviewed all volumes and continues to
contribute to the design of the environment, and Dona Erb, who also reviewed all volumes.

=

CONTENTS

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Introduction

1.1 Approach
1.2 Contents of Volume

Method for Design Recovery

2.1
2.2
2.3
2.4
2.5

Obtain an Overview

Identify Control Structure
Identify Data Structure
Abstract Program Structure to a Higher Level
Determine the Function of Each Subprogram

Method for Upgrading an Arbitrary FORTRAN Program to COMGEN
Compatibility

3.1
3.2

3.3
3.4
3.5
3.6
3.7

Examine COMMON Structure

Separate COMMON Specification Statements from Internal
SpecificationStatements
Convert COMMON Structure to EQUIVALENCE Format
Achieve Variable Name Uniqueness in COMMON Structttre
Create a COMMON Database for the Program
Remove Unneeded EQUIVALENCE Statements

Verify COMGEN-Compatability

Method for Upgrading a COMGEN-Compatible FORTRAN Program to New
"Standard" FORTRAN

4.1
4.2
4.3

Rename Variables with Longer Names
Convert to Modern Control Flow Structures

Group Routines into Packages

Method for Converting New "Standard" FORTRAN Program to Another

Language

Method for Converting a COMGEN-Compatible FORTRAN Program to Another

Language

6.1 Design Recovery
6.2 Initial Partitioning
6.3 Package Specifications
6.4 Implementation
6.5 Unit Testing

Method for Converting an Arbitrary FORTRAN Program to Another Language

1
3

5

6
6
7
8

10

10

11
11

12
12
14
14
15

15

15
15
18

19

19

20
20
22
24
27

27

iii

CONTENTS (concluded)

10.0

11.0

Conclusion

Appendix

9.1
9.2
9.3

Standardized Comment Statements (CDs)
Tool Set

Data Sets

Glossary

References

FIGURES

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Levels of Reengineering

Alternative Paths for Improving Maintainability

Grouping Subprograms into Modules

Logically Grouping Data.

Data Flow in Design Recovery and Redesign Steps

Data Flow for Package Specification Step

Package Configurations

Table 1

TABLES

Information Extracted from Current System by Re.engineering

27

28

28
29
33

34

37

2

4

8

9

21

22

23

iv

Design Recover_ and Reen_ineerin_ Methods

1.0 INTRODUCTION

Programs in use today generally have all of the functional and information processing
capabilities required to do their specified job. However, older programs usually use obsolete
technology, are not integrated properly with other programs, and are difficult to maintain.
Reengineering is becoming a prominent discipl_e as organizations try to move their systems to
more modem and maintainable technologies. -Johnson Space Center's (JSC) Software
Technology Branch (STB) is researching and developing a system to support reengineering
older FORTRAN programs into more maintainable forms that can also be more readily
translated to a modem language such as FORTRAN 8x, Ada, or C. This activity has led to the
development of maintenance strategies for design recovery and reengineering. These strategies
include a set of standards, a methodology, and the concepts for a software environment to

support design recovery and reengineering.

These products and concepts are documented in a five volume report, Maintenance Strategies
for Design Recovery and Reengineering, of which this is the third volume. Volume 1,
Executive Summary and Problem Statement, contains a statement of the problem and an
overview of the STB's approach to solving the problem. Volume 2, FORTRAN Standards,
defines new FORTRAN standards to augment the standards already in place in the mission
planning and analysis domain at JSC. Volume 3, Methods, describes the methodology, which
is based on experience in reengineering. This volume contains the "how-to" of the
maintenance strategies presented in the first two volumes. Although the methods presented
here can be perfomaed manually, the manual process can be tedious and error prone. Existing
tools in the STB's tool set that support some of the steps of a method are identified. At the
present time these tools are available as stand-alone tools. Volume 4, Concepts for an
Environment, presents the concepts and proposed architecture for an integrated environment to

support the standards and methods. The proposed environment will integrate the existing
tools, additional tools to be developed in-house, and commercial-off-the-shelf (COTS) tools.
It will provide an improved, consistent user interface and will integrate the data that is
generated and shared by the tools. Volume 5, A Method for Conversion of FORTRAN
Programs, records the lessons learned in a pilot project that converted a large FORTRAN
program to Ada. The reader who is interested in converting a program from FORTRAN to
another language is encouraged to read Volume 5, which shares the lessons learned in
performing a conversion, in order to fully understand the rationale behind the methods for
conversion.

1.1 Approach

Reengineering is the combination of "reverse engineering" a working software sy.stem and then
"forward engineering" a new system based on the results of the reverse engineenng. Forward
engineering is_ the standard process of generating software from "scratch." It is composed of
the life cycle phases such as requirements, architectural design, detailed design, code
development, testing, etc. In each phase, certain products are required and the activities which
produce them are defined. Each product is required to be complete and consistent. To

progress forward to a new phase normally requires a new representation of the products that
involve more detail such as new derived requtrements, design decisions, trade off evaluation

between alternative approaches, etc. Finally, code is developed, which is the most complete,
consistent, and detailed representation of the required product.

Page 1

Design Recover_ and Reengineering Methods III

Reverse engineering is the reverse of forward engineering. It is the process of starting with
existing code and going backward through the software development life cycle. Reverse
engineering starts with the most detailed representation, which has also proven to be complete
and consistent since it can currently do the job required. Developing products in reverse
involves abstracting out only the essential information and hiding the non-essential details at
each reverse step. Life cycle products are, therefore, obtained by abstracting from more
detailed representations to more abstract ones. This process should proceed faster than
forward engineering since all of the details required are available.

How far to go backward in the reverse engineering process before it is stopped and forward
engineering begins is a critical question and involves trade offs. It is important to understand
all of what the program does, all of the information it handles, and the control flow since these
are probably required to get the job done. This implies taking the reverse process far enough to
understand what the "as is" program is. Figure 1 illustrates reengineering with full reverse
engineering to the point of the recovery of requirements and to the point of recovery of the
design of the program. Reverse engineering is referred to as "design recovery" when the
reverse engineering process stops at the recovery of the design of the implementation, rather
than proceeding on to a higher level of abstraction to include the recovery of the requirements.

i iiiii ii!iiiiiiii!iiiiiiiii iiiiiiiiiiiiiiiiiii iiiiiii!ii i !iiiiiiii iiiiiiiiiiiiiii!iii i i ! !iiiii i ! iii iiiiiiiiiiiiiiiiii!iii iiiiii!iii!iiii!ii!iii! iiiiiiiiiii!!i!iiii!i!iiiii!i!i!i!i iiii!i!iii!iiiiiiiiiiiii! ii !iii!iiii! i! ii iiiii i!i

iiiiiii_iiiiiilOrig _na_ i_i_iSystem !_iiii_iii_i_i_i_i_iiiiii

_iiii_iiii_i!i_iiiii_i_;_;_i_i_ii_i_i_ii_i_;ii_i_i_ii_i_!iiiiiiiiiii_i_!_!_i_i_i_i_ii_i_ii_i_;_ii_!iii_ili_!_ii!_'_::_::_ii',iiii',i',',:_:_::::_:_i:o:_?,!i

ii ii i i i i i ;___i_i_;_____i_ii i _i i i i i i i i i ;!i ___i!__!i!-!i!i!ii_ili_!ii_::':':':::::::::::::::'::::::::::::::::::_!_!i!i_!_!!!!i!!; !::-::?::i-i'i-i'i':-:-:-:-:-:-:-:-:-:-:-!!!! !!!!_"!!!!!!;:':;:ii _i__;".-:,_______!!__!!!!!!!!i !!!!!_!!!!!!_!! __ !_!!!!!_!

::iiiiiiiiiiii?_i_i_i_iii_iii_ii_ii_!_i_!i_i_i_i_i_!_!_i_ iiiiCurrent i_i_i_:iliiliiiiiiil
ii:_;::i::;_:iiii::ii;ii::;iiO rk_ _na_ _ _ii_iiS_st em iiiiiiiiiiiiii_iiiiiiiiill
;!_ _Z_re uirements _;::;_:_;_ Design Recovery ==

iiiiiiiiiiii_iiii!!iiii_i_i_i_iiii_ii_ii_i_iiiiiiiii_i;i!iii_i_;i!!_i_!ii_!_!i!iii_i..................................._:::.i::i!i:g:i::i::ililili::i_i_i::ii::i_..................................._._i_i_i_i_i_i_iii_i_i_i_iii_i_!!i_i_!i_!i!_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i`_i_..%i_i!_iiii_i_i_i_

Figure 1. Levels of Reengineering

Design recovery involves recovering information about the code modules, the data structures,
and their interrelationships in an existing program. This information supports the
programmer/analyst who is maintaining an unfamiliar large FORTRAN program, upgrading it

for maintainability, or converting it to another target l.anguage. However, a better job of
redesigning a program can be accomplished with requtrements recovery than with design
recovery. To carry the reverse engineering process beyond design recovery to requirements
recovery is difficult and requires higher levels of domain knowledge to do the abstractions.
The "whys" of the requirements, design, and implementation can only be provided by someone
very familiar with the program and the domain. This level of expertise is often very difficult to
find and have dedicated to the reengineering process.

The philosophy of the reengineering process is to capture the total software implementation in
an electronic form. This includes source code, data structures, documentation, etc. A

progression in electronic forms can ensure that the total consistent and complete requirements
are represented. By the continuing process of abstracting the information about the program

Page 2

Design Recovery and Reengineering Methods

into different representations, the engineer can remain confident that information is not being
lost. Table 1 shows the information that can be extracted from the source code of the current

system for each of the three phases of the software development life cycle. Tools are already
available in the STB tool set to obtain the information identified for the detailed design phase.
Modifications to existing tools will yield the information identified with the preliminary design
phases. However, the tools to support the abstraction to the level of requirements analysis
must be developed or purchased as COTS products in the future.

Table 1. Information Extracted from the Current System by Reverse Engineering

REQUIREMENTS ANALYSIS

• Data flow diagrams

• Entity-relationship diagrams

• Requirements

PRELIMINARY DESIGN

• Definition of virtual packages

• Abstraction of module

dictionary

• Abstraction of data dictionary

• Reproduced design document
frame

DETAILED DESIGN

• Control structure (calling
tree and control flow chart)

• Module dictionary

• Data structure (cross-
reference information)

• Data dictionary

• Documentation of "as-is"

program (what it does
and how it does it)

For this reason, initially the methods and tools developed by the STB assume reverse
engineering only to the design recovery stage. That is as far as the STB's existing tools
support. Additional software tools are needed to support the generation of the more abstract
products required for reverse engineering as well as the capture of rationale and decisions of
the engineer. Therefore, the STB is tracking emerging COTS tools and research that is being
performed to push reverse engineering further back into the life cycle. The methods presented
here, and the environment to support them, are designed to evolve as the supporting
technologies mature. The current standards, methods, tools, and environment are all designed
to be sufficiently flexible and extendible to enable the strategies to be extended to cover the full

spectrum of reverse engineering. The evolution of these strategies depends upon the active
participation and input from the JSC software maintenance commumty.

1.2 Contents of Volume

Figure 2 shows the upgrade paths supported by five of the methods that are defined in this
volume. The boxes in the diagram denote four states, from right to left :

Page 3

Desisn Recovery and Reensineerin_ Methods

Other target language Program converted to FORTRAN 8x, C, or Ada.

New "standard" FORTRAN FORTRAN program that meets the standards
proposed in Volume 2 to make a program easier
to understand, to maintain, and to translate to

another target language.

COMGEN-compatible FORTRAN FORTRAN program that meets the existing
COMGEN standards, developed and followed in
JSC's mission planning and analysis domain.

- Arbitrary FORTRAN Any other FORTRAN program.

The maintainability of a program improves incrementally with upgrades from a program state at
the left of the diagram to a state to its fight. Budget, available manpower, type of maintenance
problems being encountered, and other individual constraints will determine the maintainability
upgrade path selected by the management of a given project. The basic approach and the tool
set (although, not necessarily the individual tools) are the same for each of the upgrade
methods; the difference is the current state of the subject FORTRAN program and the desired
upgraded state.

!_i_i_i_i!iiiii_iiiii_iiii!iiiiiiiiiiiiiiii!iiiii!iiii_iiiii!!i!iiiiiiiii_iii_iiiiiiiiiiiiii_iiiiiiiiiiiiiiiiii!iii!ii!iiiiiii!iiiiiiiii_iii_i_i_iiiiiiiiiiiiiii_iiiiiiiiii_!_iiiii_ii!ii!i_iiiiii_iiiii_iii!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiii!_iii_iiiiiii_iiiii_ii!iiiiiiiiiiii_iiiiiiiiii_iiiiiiiii_iiiiiiiiii!iii!iiiiiii_iii!iiii!iiiiii!iiiiii_iiiiiiiii_iiiiiii!_iiiiii_iiiiiii_i_iiii_i_i_i_i_i_ii_i_i_iii!_
iiiiiiiiiii!ii!iiiiiiiiiiii!iiiiNew iiiiiiiiiiiiiiiiiiiiiiiiiiiiii!ii!ii!i!i!OtherTarge ii!i

^.,I,... [i:_i!iiiMel_od1 i_ii_iiii]COMGEN-[iii_Mothod 2 iiiii4 . [_::iiii_"_-:::_::::4 Lan_uane _i!i
,._L'..=_'x., Compatible "Standard _ _ _ f_ii

Iiiiiiiiiiiiiiiiiii ilillii!! i i iiiiil lii ii iiiiiil
Iiiiiiiiliiiiiiii!i!iiiiii!iiii!!!!?!!!!!!!!!!!!!!!ii!!!!!!!!!!!!!!!!!!!!!!!!!!!!

ii_i_i_iiiiiii_iiiiiiiiiiiii_iiiiiiiiiiiiii_iiiiiiii_i_iiiiiiiiiiiiiiii_i_iiiiiiii_iiiiiiiiiiii0i_iiiii_i_iiiiiiiiiiii_ii_iiii_i_ii_ii!:_?__:_:_:_:_i__i_;_i_ :_i_i _;_;_i_i!iiii!iiii!ii!ii_iiii_i_i!iii_iiiii_iii_ii!i_iiiiiiiii!iiiiiiii_iiiii_iiiiiiiiiiiiii!iiii!i!i

Figure 2. Alternative Paths for Improving Maintainability

In addition to the five methods identified in figure 2, a method for design recovery is defined in

this volume. Design recovery is different from the activities addressed by the other methods,
because the focus in design recovery is to gain an understanding of the subject program, not to
change it in any way except to insert comment statements into the program to capture any
previously undocumented knowledge. Some degree of design recovery is fundamental to
understanding any large program that is being maintained or upgraded. Design recovery is the
first step required for both Methods 4 and 5, which convert a program from a current state of
FORTRAN to FORTRAN 8x, Ada, or C using structural and other major modifications to

apply software engineering principles.

Page 4

Design Recover_ and Reen_ineerin_ Methods

This volume is organized with the next section addressing a method for design recovery,
followed by one section for each of the the five methods identified in figure 2 for improving the
maintainability of a subject program. Following a brief conclusion section, an appendix
provides summary information on STB's standard in-line documentation, tools, and data sets.
A glossary of acronyms and terms and a list of references for the document are also provided.

2.0 METHOD FOR DESIGN RECOVERY

The method presented in this section represents one possible approach to design recovery. The

approach is taken from the perspective of someone who is examining a large body of
unfamiliar code and trying to understand it as a whole. A programmer/analyst who is

concerned only in maintaining or enhancing a particular function can probably take a more
localized approach if that person already understands the overall architecture of the program
under analysis.

When first trying to understand a large program, the programmer/analyst can feel overwhelmed
by the size and complexity of the program. Avoiding information inundation depends on
techniques for maintaining control over the information being browsed. The primary goal of
this proposed method for design recovery is to present ways to extract and manage the large
body of information about the implemented design that is embedded in the code and its
structure. The programmer/analyst must gain an understanding of the subject program as a
whole, and as the sum of its parts. Because this process is somewhat intuitive, like putting

together a jigsaw puzzle, it can not be totally automated. However, much of the knowledge
that is contained in the source code can be extracted and organized by the use of the STB's
software tools and strategies for design recovery. All of the tools identified in this volume are
already in the STB's tool set. (See the appendix for a short description of each of the tools
referenced in this volume.)

It is recommended that, as information is extracted in the process of design recovery, this

knowledge should be captured and preserved in-line with the code by following the
documentation standards established in the mission planning and analysis domain at JSC. This

means using structured comment statements, referred to as "CD" statements, in the prolog of
each subprogram as the repository to store the information. (See the appendix for brief
descriptions of each of the CD statements. For further information, see the Software
Development and Maintenance Aids Catalog (NASA IN 86-FM-27.)) Information about
requirements (what the subprogram does) should be recorded in CD0 (identification) and CD 1
(purpose) statements. Information about the internal design of a subprogram (how the
subprogram does its job) should be recorded in CD2 through CD9 plus in header comment
statements before blocks of code.

An ideal design recovery would recover the following information:

- Purpose, size, and scope of the program as a whole (i.e., overview).

- Subprogram interrelations (i.e., control structure).

Interrelations among global data items and subprograms (i.e., data structure).

Page 5

.DesignRecover_ and Reengineering Methods

- Subprogram groupings (i.e., abstraction of the program structure to a higher level).

- Function of each subprogram (i.e., what each subprogram does).

2.1 Obtain an Overview

The first step in approaching a large, unfamiliar program is to try to get a feel for its purpose,
size, and scope. The following steps are recommended:

Find the purpose of the program. Read any available requirements and design
documents, out of date or not. Read the prologs, if any, of the top level program units
where the program purpose may be given, although usually only at a low level. The
AUTODOC and SUBDOC processors provide documentation nicely formatted for
browsing if the program is contains CD statements. Talk to someone who knows the
program, if available.

Estimate the size and scope of the program. Identify the main program and the number
of subprograms; the number and size of source fries; and the number, size, and type of
COMMON blocks. Use the TOCGEN processor to generate an alphabetized list of
subprograms with the lines-of-code count for each subprogram and the total lines of
code for the program.

2.2 Identify Control Structure

The next step in understand an existing FORTRAN program usually is to learn about its control
structure. The following steps are recommended:

- Generate a list of subprogram vs. subprograms called, using the CREATE processor.

- Generate a list of subprogram vs. subprograms called-by, using the CREATE

processor.

Generate a list of files vs. entry points, using the CREATE processor.

Generate a list of entry points vs. files, using the CREATE processor.

Generate hierarchical call graphs, using the DEPCHT and SETGEN processor.

Eliminate utility subprograms. Locate them by identifying the small subprograms
that are called by several other subprograms, but do not call any other
subprograms. Obtain a second call graph without the utilities to obtain an overview
graph for the program.

Annotate the hierarchical call graph to show conditionals, loops, cases, etc. Look
at the conditions that will cause each subprogram to be called. Determine if a

subprogram is main line (i.e., always called), or called only if a certain flag is set.
Determine what conditions will cause the flag to be set. This activity will help to

identify the most important or, at least, most frequently used subprograms.

Page 6

Design Recove 7 and Reengineering Methods

Start to notice the groupings. For example, subprogram A is called only by
subprogram B, but subprogram C is called by several subprograms in different
areas of the hierarchy.

2.3 Identify Data Structure

The data components of a program need to be identified and classified just as much as the
control structures. In analyzing the program data to understand the data structure and the use
of data items, the following procedure is recommended:

Generate a list of COMMON blocks versus subprograms, using the CCREF processor.

Generate list of all COMMON variables in a subprogram showing if the variable is
initialized, set, or used in the subprogram, using the CREATE processor.

Generate a list of COMMON variables versus subprograms, using the INVERT

processor.

Examine the COMMON blocks to gain understanding of their contents.

-- Determine if a COMMON block contains only single data items, groups of related
data items, or groups of unrelated data items.

Determine the scope of each COMMON block, i.e., which subprograms reference
the data items in a given COMMON block using the CCREF and RELREF
processors. The scope of a COMMON block can help in analyzing the potential
impact of making a maintenance modification or in deciding on packaging when
improving the maintainability of a program.

-- Examine data item usage by subprogram to find the most often used parameters.

Attempt to determine the meanings of the most used data items. To do this, examine
these items in source code and read their descriptions, if available in the comments
within the code and within the COMON database (CDB) for variables in COMMON
blocks.

- Completely define the data structures containing the most frequently used data.

- Locate all of the input/output statements in the subject program.

For COMGEN-compatible FORTRAN programs, the COMMON database (CDB) is the best
place to fred and to store additional information about the structure of the global data. One of
the primary advantages of COMGEN compatibility is that the structure of the COMMON
blocks is defined in the CDB and maintained with the aid of various of the STB processors.

The CDB is briefly described in the appendix and glossary, but for detailed information, see
the Software Development and Maintenance Aids Catalog (NASA IN 86-FM-27). Much of the
creation of a CDB can be automatically generated from the some code using the STB's tools
as described in section 3, where the method for upgrading an arbitrary FORTRAN program to
COMGEN-compatibility is described. Any data definitions that are missing from the CDB

Page 7

Oe=i ,,Re ove,7and Metho,

should be added as they are obtained. In this way, knowledge that is obtained in the design
recovery process is preserved for other persons who are assigned to maintain the software.

2.4 Abstract Program Structure to a Higher Level

The modules that make up an old FORTRAN program are seldom self-evident, since they are
often coded not as a single source file, but rather as a group of separate files or subprograms.
To abstract the structure of the subject program to a higher level of abstraction than the

subprogram level, the job is to properly group these subprograms to form the modules that
constitute the logical structure of the program (See figure 3). Program modules have three
basic sets of characteristics: control cohesion, data cohesion, or organizational convention.

Figure 3. Grouping Subprograms into Modules

A module that exhibits control cohesion is a group of subprograms that is characterized by a
single entry to the set of subprograms and by the property that all of the other subprograms in
the module are reachable only from that single subprogram entry. A module of the data
cohesion type is related because it operates on the same data, and thus is object-like, in the
object-oriented sense. It is centered on a specific data entity (e.g., a screen window) and a set
of subprograms that manage that entity (e.g., create a window or move a window). A module
of the organizational convention type is organized as a group of subprograms that serves a
single purpose, such as general purpose utilities or mathematical routines.

There willalsobe subprograms that do not fall into any of the above areas. These are primarily
independent routines rather than modules. These can be classified into three groups: utility
routines, domain-specific routines, top level program executive modules, and unclassified,
independent, single purpose routines. Domain-specific routines are routines that are called
from several places within a program. They are used in a manner similar to utility

subprograms, but their purpose is not general enough-for them to be considered-as true utility
routines, _Datad_!aration files, such asBLOCK DATA routines in FORTRAN, are examples

of the unclassified routines. _ _=_

Page 8

Design Recovery and R.eengineering Methods

The previous two steps, which identified the control structure and the global data structure of
the subject program, serve as preparation for this step of grouping logically related

subprograms. The following activities are recommended:

Locate control cohesion modules by examination of the branches in the call graph
created by the DEPCHT processor. The programmer/analyst might wish to repeatedly
drop identified modules and rebuild the call graph so that the unclassified areas can be
viewed more clearly. For a large program the programmer/analyst may wish to

generate call graphs for subsets of the code using the SETGEN processor.

Identify data cohesion modules and organizational convention modules (if any) in the
code by examining the code and data structures in the source f'des with multiple entry

points. In addition, use the CCREF processor to identify subprograms that access the
same COMMON blocks; these subprograms are candidates for data cohesion modules.
If the program is COMGEN-compatible, this analysis may result in logically grouping
data by breaking down single master arrays into multiple master arrays and nesting
them in the CDB, as shown in figure 4.

t IooMMoNB'°°kl lili{iiiiiiiiiiiiililI_OMM:TM_'°_"l f]
ill/ iiiiiiiiiiiiiiiiiiiiiiilooo,;.,os i1/

4,

!1.................:.......:........-.........:.................:.......:.........!.............................!i_i!_iii:,_i_i_!!i_!i_,_v_v,.,,.,,'..d_ !

Figure 4. Logically Grouping Data

Store the subprogram classification information in a module description file. As the
code is examined and the purposes of various subprograms are learned, create a
description file either external to the code or, preferably, by inserting CD 1 comment
statements in-line with the code. If CD 1 comment statements are being inserted within

the code, the subprogram classification information may be stored into a program
element table (PETAB) and key word table (KEYTAB) so that the SUBDOC processor
can generate meaningful subprogram purpose documentation. (See the appendix for
brief descriptions of each of the CD statements, SUBIX)C, PETAB table, and

Page 9

Design Recover_ and Reen_ineerin_ Methods

KEYTAB table. For further information, see the Software Development and
Maintenance Aids Catalog (NASA IN 86-FM-27.)

2.5 Determine the Function of Each Subprogram

After the structures of a subject program are understood, it is necessary to look at the individual
program units again and understand what each unit does - not how, but what. This will require
a lot of reading of the source code. The presence of reliable comment statements will
obviously help. Design documents, if available, will help depending on their currency and
accuracy. However, the problem with comments and design documents is that there is no way
to ensure their correctness. They may be out of date, or they may well have been wrong in the
flu'st place. Read them, but remember that a program does what its code says, not what the
comments or documents claim it will. The FORREF processor provides cross-reference

displays to help to analyze the c ,,ode of a FORTRAN subprogram. The DDT processor can be
used to generate detailed debug trace information, if it is necessary to understand particularly
tricky code.

3.0 METHOD FOR UPGRADING AN ARBITRARY FORTRAN PROGRAM
TO COMGEN COMPATIBILITY

COMGEN-compatibility provides three primary benefits: documentation is provided in
structured in-line comments, the data structures are pre-defined, and the source code is
compatible with the STB's tool set, which assists a programmer/analyst in maintenance and
design recovery activities. This tool set runs most effectively against a program with the
COMMON database (CDB). The structure of the COMMON blocks is defined in the CDB and
maintained with the aid of various STB processors. The use of a CDB improves the
maintainability of the COMMON structure in large FORTRAN programs. The CDB is
described in detail in the Software Development and Maintenance Aids Catalog (NASA IN 86-
FM-27).

Many of the steps in updating an arbitrary FORTRAN program to this standard COMMON
structure have been automated by the CCREF, CLEANUP, and SPECPN processors. The

upgrade steps are presented in the following paragraphs with particular emphasis on potential
problem areas.

The following list of activities summarizes the method for upgrading any arbitrary FORTRAN
program to COMGEN-compatibility:

.

2_

Examine the current structure of the COMMON blocks of the program and decide

which COMMON blocks to place under control of the standard COMMON concept.

Separate the COMMON specification statements from the internal specification
statements in each subprogram.

3. Convert the COMMON structure to the EQUIVALENCE format.

4. Achieve variable name uniqueness in the COMMON structure.

5. Create a CDB for the program.

Page 10

Design Recover_ and Reen¢ineerin_ Methods

6. Remove unneeded EQUIVALENCE statements.

7. Verify COMGEN-compatibility.

A programmer/analyst may not need to perform every operation discussed in the following
steps. If the program COMMON structure is fairly clean, the COMMON upgrade should take
fewer steps and may be totally automated.

3.1 Examine COMMON Structure

The programmer/analyst runs the CCREF processor on the subject program to obtain a
COMMON block cross reference display of how the COMMON is structured in the program.

The CCREF output provides the information necessary to decide which, if any, of the
COMMON blocks the programrner/analyst does not wish to include in the CDB. Blank
COMMON (used as a program scratch area) should not be included in the CDB.

3.2 Separate COMMON Specification Statements from Internal Specification
Statements

Upon determining which COMMON blocks are to be included in the CDB, the
programmer/analyst runs the CLEANUP processor with the c-option. This operation will
reconstruct all specification statements from each subprogram so that all selected COMMON
blocks and related specification statements are segregated from specification statements related
to local variables and COMMON variables of excluded COMMON blocks. This operation

places the specification statements for those COMMONs to be included in the CDB within the
standard COMMON delimiting comment statements as follows:

C***BEGIN STANDARD COMMON

Specification statements relative to the CDB

C***END STAND_,D COMMON

Non CDB related specification statements

Page 11

Design Recover): and Reen_ineerin_ Methods

3.3 Convert COMMON Structure to EQUIVALENCE Format

This step to convert COMMON structure to EQUIVALENCE format will be required only if
the COMMON in the program being converted is in the in-line type format; i.e., the COMMON
statements are of the following form:

COMMON/ARRAY/A, B (3), C

To comply with the CDB standards, the only variables that appear in a COMMON statement
are "master arrays." Variables equivalenced to locations in a master array are called "common
variables." In the actual subprogram code the common variables are referenced. In the
example below, ARRAY, is a master array and A, B, and C are common variables. The type
of in-line COMMON structure in the example above must be converted to the EQUIVALENCE

format shown below by means of the CLEANUP processor with the c-option:

DIMENSION B (3)
COMMON/ARRAY/ARRAY (1)
EQUIVALENCE (A , ARRAY (1))

1, (B , ARRAY(2))
1, (C , ARRAY(5))

CLEANUP performs this upgrade automatically for each COMMON block under standard
COMMON control in the program.

3.4 Achieve Variable Name Uniqueness in COMMON Structure

Depending on the structure of the COMMON in the subject program, this step may range in
complexity from needing a great anaount of work to not being needed at all. The determining
factor is how well the subject program adhered to a unique name per location in its COMMON
structure. The two standard COMMON rules concerning name uniqueness are as follows:

The same name cannot appear in two different COMMON locations.

- More than one name can occupy the same COMMON location, but this adds complexity
to the COMMON structure and should be limited to use only where necessary.

To begin this process, the programmer/analyst runs the CCREF processor (with the c-option)
on the program source code obtained from the last step, which converted COMMON structure
to the EQUIVALENCE format. The current step will cause the program to test the code for
adherence to the standard COMMON uniqueness rules. The output messages identify the

exceptions to the uniqueness standards and the work that needs to be done to the program to
complete the process.

Various options exist to resolve the non-unique conditions. The recode processing options
available in CLEANUP allow the programmer/analyst to rename a variable in one of the
following two ways:

Rename the variable throughout the subprogram.

Page 12

Design Recover_ and Reen_ineerin_ Methods

Rename the variable only in the standard COMMON controlled regionand generate a
second level equivalence of the old name to the new name. For example, a rename of B
to A under this option would produce the following structure:

C*** BEGIN STANDARD COMMON

COMMON / NAME / ARRAY(1000)

EQUIVALENCE (A , ARRAY(10))

C*** END STANDARD COMMON

EQUIVALENCE (A , B)

The second standard COMMON rule relating to two variable names in the same COMMON

location can be resolved in the following two ways:

- Rename one of the variables to be the same as the other, as discussed above.

Leave both variables in the CDB. Use of this option should be held to the absolute
minimum since it complicates the COMMON structure. If both variables are used in the
same subprogram, the format indicated in the example above can be used, or the

programmer/analyst can create the following structure.

C*** BEGIN STANDARD COMMON

COMMON/NAME / ARRAY(1000)

EQUIVALENCE (A , ARRAY(10))

EQUIVALENCE (B , ARRAY(10))

C*** END STANDARD COMMON

After performing all the recodes using the CLEANUP processor, run the CCREF processor
again to help verify that the results have been as desired.

Care must be exercised when doing recedes on dimensioned variables using the CLEANUP

processor. If both the old and the new variable names already appear in the subprogram, they
should have the same dimension in order to avoid possible errors because the dimension that
will remain is that of the new variable. When doing recodes where the old name and the new
name are not equivalenced to each other, the programmer/analyst must be sure that the new
name is not already a local variable in the subprogram. If this is the case, then the
programmer/analyst must fast run a recode to change the name of the local variable to
something else. Then the desired recode can be performed, replacing the old name with the
new name. Because of the CLEANUP c-option logic, these operations cannot be done in a

single execution of the processor.

Page 13

Design Recover_ and Reen_ineerin¢ Methods

There are two situations where the programmer/analyst may not wish to do a recode operation,
but wishes instead to leave a second level equivalence in the program:

Equivalences of the following form:

EQUIVALENCE 03(6), C)

In this case the CLEANUP processor cannot replace C by B(6); therefore, this
EQUIVALENCE will have to remain unchanged.

- Cases where certain names in certain routines have special meaning, but where these
are not the names the programmer/analyst wishes to have in the CDB.

3.5 Create a COMMON Database (CDB) for the Program

Once the COMMON structure has been transformed to a state that is compatible with the
standard COMMON rules, a CDB can be created for the program by using the CREATE

processor. The programmer/analyst will have to make the following two types of
modifications to this database to achieve a final form of the CDB:

- The programmer/analyst will have to add the COMMON variable and COMMON array
definitions by use of the UPDATE processor.

If the programmer/analyst has two master arrays in the same COMMON block, the
CDB created by CREATE will have these two arrays as two separate COMMON
blocks. By using a text editor, the programmer/analyst will have to combine these
COMMONs into one CDB COMMON.

3.6 Remove Unneeded EQIVALENCE Statements

The upgrade is now complete except for one possible step that the programmer/analyst may
wish to perform. The CCREF processor is nm with the c-option. This execution may contain
listings of the error message:

VARIABLE '"XXX" IS EQUIVALENCED TO COMMON BUT NOWHERE USED

These unused EQUIVALENCEs are usually the result of the step that converts COMMON
structure to EQUIVALENCE format. These unused EQUIVALENCEs can be removed in one

of the following two ways:

If there are only a few unused EQUIVALENCEs, the CLEANUP processor can be
used to perform the removal by individually processing each subprogram.

If there are a large number of unused EQUIVALENCEs, the SPECPN processor
removes the unused EQUIVALENCEs from the program source code.

ii

Page 14

Design Recover? and Reen_ineerin¢ Methods

3.7 Verify COMGEN-Compatibility

After a program has been modified to the stage of COMGEN-compatibility, the CAUDIT
processor can be run to check the code against the standards.

4.0 METHOD FOR UPGRADING A COMGEN-COMPATIBLE FORTRAN
PROGRAM TO NEW "STANDARD" FORTRAN

New FORTRAN standards are proposed in Volume 2 of this document. Upgrading a
FORTRAN program to meet these standards will make the program easier to understand, more
maintainable, and easier to convert to another language such as FORTRAN 8x, Ada, or C.

Many of the steps in updating a COMGEN-compatible FORTRAN program to meet the new
FORTRAN standards are supported by tools that exist inthe STB's tool set. In the following
paragraphs the method to upgrade existing COMGEN-compatible code to meet these standards
is described, the existing tools are identified, and brief coding examples are given. The steps

are grouped as follows:

1. Rename variables with longer, more meaningful names.

2. Convert to modem control flow structures.

3. Group subprograms into packages.

4.1 Rename Variables with Longer Names

The CLEANUP processor provides the capability to rename variables in FORTRAN source
code. This processor will be updated with a front-end that will present the programmer/analyst
with all the names found in a given file and ask for new names to be entered. The processor
will then perform the renaming to longer, more meaningful names in one pass.

4.2 Convert to Modern Control Flow Structures

The CONVERT processor with the b-option provides for the conversion of old style code to a
more structured format. CONVERT cannot remove all GO TO's from general FORTRAN
code. In order to remove all GO TO statements, additional non-ANSI standard constructs

would be needed, such as CASE and the REPEAT/UNTIL loop, which are not supported by
most current FORTRAN compilers. For this reason, CONVERT does not support these
constructs. Following are examples of code conversions to more modem control flow
structures that the CONVERT processor and most FORTRAN compilers do support.

Example 1

The following code converts a string to upper case characters:

NCHAR = LEN (STRING)
DO I001 = I,NCHAR

IV = ICHAR (STRING(H))
IF (IV .LT. 97) GO TO 100
IF (IV .GT.122) GO TO 100

Page 15

Desisn Recover_ and Reen_ineerin$ Methods

100

IV= IV- 32

STRING(H) = CHAR(IV)
CONTINUE

After processing by the CONVERT processor, the code has the following form:

100

NCHAR = LEN (STRING)
DO 1001 = I,NCHAR

IV = ICHAR (STRING(I:I))
IF (IV .GE. 97) THEN

IF (IV .LE. 122) THEN
IV-- IV - 32

STRING(I:I) = CHAR(IV)
END IF

END IF
CONTINUE

Example 2

FORTRAN logical IF constructs such as the following:

IF (DEBUF .NE. 0) CALL PRINT (A,B,C)

are converted by the CONVERT processor to the following structured form:

IF (DEBUF ./fiE. 0) THEN
CALL PRINT (A,B,C)

END IF

Example 3

The CONVERT processor can also create W-THEN-ELSE structures as shown by the
following example:

25

50

N -- ILCHAR + IFCHAR
MOVE = JCHAR - N
KCHAR -- NCHAR - ILCHAR

IF (MOVE .EQ. 0) GO TO 50
IF (MOVE .LT. 0) GO TO 25
CALL C4MOVE (CARD(NCHAR),- 1,CARD(NCHAR+MOVE),- 1,KCHAR)
GO TO 50
CONTINUE

CALL C4MOVE (CARD(ILCHAR+ 1), 1,CARD(ILCHAR= 1=MOVE), 1,KCHAR)
KCHAR - -MOVE
CALL C4MOVE (mLANK,0,CHARD(NCHAR),-i,KCHAR)
CONTINUE

7

This code translates to the following:

Page 16

Design Recovery and Reengineerin$ Metho_:

N = ILCHAR + IFCHAR
MOVE = JCHAR - N
KCHAR = NCHAR - ILCHAR

IF (MOVE .NE. 0) THEN
IF (MOVE .GE. 0) THEN

CALL C4MOVE (CARD(NCHAR),- 1,CARD(NCHAR+MOVE),- 1,KCHAR)
ELSE

CALL C4MOVE (CARD(ILCHAR+I), I,CARD(ILCHAR= I=MOVE),I,KCHAR)
KCHAR = -MOVE

CALL C4MOVE (IBLANK,0,CHARD(NCHAR),-1,KCHAR)
END IF

END IF

Example 4

The CONVERT processor will also drop the statement numbers from DO loops, thus changing
them to the BLOCK DO format as in the following example:

100

DO 100 1 = I, NCHAR
IV = ICHAR (SSTRING(I:I))
STRING(I:I) = CHAR (IV)
CONTINUE

After processing by the CONVERT processor, this code becomes of the following form:

DO I = I,NCHAR
IV = ICHAR (SSTRING(I:I))
STRING(I:I) = CHAR (IV)
ENDDO

Example 5

The CONVERT processor can also convert certain IF structures to DO WHILE loops, as in the
following case:

100 CONTINUE

IF (IV .GE.0) THEN
STRING (IV) = "
IV=IV- 1
GOTO 100

END IF

The CONVERT processor will change this to the following form:

DOWHILE (IV .GE.0)
STRING(IV) = "
IV=IV-1

ENDDO

Page 17

Design Recover_ and Reen[ineerin_ Methods
[I1_1 IL_ i I I [I

4.3 Group Routines into Packages

A traditional approach to managing the complexity of problems has been to divide large
problems into a series of subproblems, each of which is more or less independent of the
others. The language construct that historically has helped software engineers to implement
this strategy in software has been the subprogram. A new language construct, an extension of
the subprogram concept called a package, provides a mechanism to split large, complex
programs into larger self-contained units made up of logically related subprograms. Using this
mechanism, information can be made available to one or more subprograms yet be hidden from
the rest of the program. The Ada language directly provides for this capability. The same
concept can be applied to virtual packages by the programmer/analyst using FORTRAN 77 or
C. However, the construction and information hiding of a virtual package created in one of
these languages must be done procedurally and this requires programmer discipline.

In Volume 2, which defines the proposed coding FORTRAN standards, a somewhat artificial
technique of using comment statements and specification data fries to define the virtual
packages is described. New PACKAGE and VISIBLE statements are to be added as CD0
comment statements in the prolog of a FORTRAN subprogram in the forms "PACKAGE =
package_name" and "VISIBLE = yes or no". Each subprogram in a virtual package will have
the same package name field of the PACKAGE statement. The VISIBLE statement will be
equal to "no" for subprograms internal to the virtual package. These subprograms are called
only by subprograms with the same value of PACKAGE. VISIBLE will be equal to "yes" if
the subprogram is called by subprograms with different values of PACKAGE. A pre-
processing tool, i.e., a code auditor, will be developed to help ensure compliance for
programmers who use the PACKAGE and VISIBLE mechanism to create virtual packages in
FORTRAN programs.

This document is not going to define how the Subpro_s should be organized into virtual
packages because the organization of programs can take on a variety of forms. The traditional
function structure and the more recent object structure are the two primary approaches. Gurus
for each approach address the issue with something approaching a religious _. There is an
increasing number of proponents for a hybrid system in which each structure is applied where
it is the most natural fit (Constantine, 1990). Although standards on this issue are not

proposed in this document, it is advantageous to be able to view the structm'e of a large
complex program at a level of abstraction that is higher than that provided at the subpi'ogram
level.

In section 2 of this volume, which describes a method for design recovery, ways are identified

whereby the existing logical groupings of subprograms in a subject FORTRAN program can
be identified using some of the tools in the existing tool set. The programmer/analyst applying
the object-oriented approach may start by forming object-oriented packages from groupings of
subprograms that are characterized by data cohesion. Someone taking a functional approach
may begin by formalizing the logical groupings characterized by control cohesion as packages.
The amount of redesign that is done to a subject program is largely determined by this activity,
and is a decision to be made by each individual upgrade project.

Page 18

Desisn Recover): and Reen_!neerin[Methods :. i :

5.0 METHOD FOR CONVERTING A NEW "STANDARD" FORTRAN
PROGRAM TO ANOTHER LANGUAGE

A program that meets the new FORTRAN standards proposed in this document can be
translated almost automatically into one of the more modern languages, such as FORTRAN 8x,
Ada, or C. The modifications to the structure of data, control flow, subprogram grouping, and
meaningfulness of variable names, all of which contribute to successful translation, have
already been performed for a program that complies with these new standards. COTS
translators are being investigated for inclusion in the proposed environment for redesign and
reengineering.

6.0 METHOD FOR CONVERTING A COMGEN-COMPATIBLE FORTRAN
PROGRAM TO ANOTHER LANGUAGE

This method is general enough to be used to reengineer a COMGEN-compatible FORTRAN
program to either FORTRAN 8x, Ada, or C, incorporating modern software engineering

concepts and techniques. The converted program will have more loosely coupled and tightly
cohesive modules, and will be more readable and maintainable. The conversion approach
offers these benefits at a lower cost in schedule and in application-skilled personnel than

redevelopment from scratch. To properly understand the rationale for the the steps of this
conversion method, the reader is urged to read Volume 5, which documents the procedures and
the lessons learned in the prototype conversion of the Orbital Maneuver Processor (OMP) from
FORTRAN to a partially object-oriented Ada. The Orbital Maneuver Processor generally met
the CDB standards for COMMON blocks, which simplified the conversion.

The method presented here focuses on grouping the original FORTRAN subprograms into
groups of logically related units. In most cases the original subprograms are translated to the
target language with no major change to their operation. The only changes in operation are to
remove redundancy or to better support the new language and software concepts. The

following are some of the advantages of this approach:

- The basic algorithm and logical interface of each subprogram remains largely
unchanged, reducing the time needed for the conversion.

- The conversion team members need not be experts in the application domain, although

domain expertise helps.

- The logical interfaces of each subprogram will be fairly easy to determine, reducing the
usual design concern for completeness.

- Testing is simplified, because the converted unit can be tested side-by-side against the
original FORTRAN unit.

The most important software engineering principles to be observed are modularity, localization,
abstraction, and information hiding/encapsulation. This conversion method emphasizes these

principles. The Ada package concept is of great assistance in meeting these goals. An Ada
package is a collection of exported services and/or types with a visible part (the specification)
and a hidden implementation (the body). Although packages are referenced in the Ada sense in
this document, the concept is meant and it is not intended to imply that only Ada will suffice

Page 19

Design Recover_ and Reen_ineerin_ Methods

even though Ada directly supports the concept. Virtual packages can be implemented in
FORTRAN (see section 4.3) or in C, but this requires programmer discipline.

The conversion of a FORTRAN program falls into five basic steps. The first step is design
recovery of the FORTRAN program, gaining insight into its purpose and structures. The
second step is focussed on an initial partitioning into packages. The primary output of the
second step is an initial set of package definitions. The third step is writing detailed
specifications for the packages, analogous to writing the interface control documents for the
packages. It requires intensive study of the input/output of the FORTRAN subprograms
within each package to properly define the inputs and outputs of the reengineered packages.
The fourth step is implementation of the package specifications. If the specifications are
complete and correct, this step will be the most mechanical of the five. The final step is the unit
testing of the converted program.

6.1 Design Recovery

Design recovery has been discussed in detail in section 2 as a separate method because it is
fundamental to gaining an understanding of any unfamiliar, large, complex FORTRAN
program. This understanding is required to some extent for any maintenance support of a large
program, as well as for the first step in converting a program as described in this section and
the next.

The product of design recovery may be a document that records the design of the current
program. Even if a formal document is not required, comments should be added in-line with
the code to help preserve the design knowledge that has been captured.

6.2 Initial Partitioning

Although steps one and two, design recovery and initial partitioning (i.e., redesign), are
described sequentially, they are actually performed in parallel. Design recovery is started first,
then as understanding increases a notional set of packages to replace the current structure takes
form. Once the programmer/analyst has begun to understand the current program, it is time to
start to consider the packaging of the converted program. Figure 5 shows the data flow in the
steps of design recovery and initial partitioning.

The opportunity to apply object-oriented design is greater in the complete redevelopment of a
program or with reverse engineering an existing program to the point of recovering the
requirements than with reengineering an existing program to the point of design recovery. The
latter case is addressed by this method. The primary definition of object-oriented design used

in formulating this method is taken from Grady Booch's Software Engineering With Ada
(1983). An "object" is def'med as something, whether a constant or variable, simple ibr
complex, that maps to some real-world entity. Booch's classification of packages as falling
into four types may be helpful: named collections of declarations, groups of related program
units, abstract data types, and abstract state machines. (See Booth, 1_9_.83(or definitions.)
Remember that packages that are object-oriented should provide a "complete" set of operations
for the object, so input/output subprograms will also go in the package - at least at a high level.

Page 20

Design Recover_ and Reen_ineerin_ Methods

-=

Figure 5. Data Flow in Design Recovery and Redesign Steps

After the object-oriented packages are defined, the remaining packages are largely functionally-
oriented. Booch's four classes of packages are still useful. Packages consisting of groups of
related subprograms will be the hardest to identify; the best help here is to look at the scope of
COMMON blocks and to understand the functions performed by the routines. Some of this
will require knowledge of the domain.

The products of the initial redesign may include:

An initial design document for the converted program which describes each package,

using any design method chosen by the conversion team.

A data dictionary, or description of abstract data types and objects.

Identification of potential reusable parts, if desired. (This would require more domain
knowledge.)

At the end of the initial redesign, there should be a formal review of the first cut at package
partitioning. Attendees should be the members of the conversion team and any engineers with
knowledge of the original program. The knowledgeable engineers will be able to point out any
inconsistencies in the first cut packages and may be able to help identify more potentially
reusable packages.

6.3 Package Specifications

Step three, specifying the packages, creates the detailed specifications for the packages that
have been identified in the initial redesign. Figure 6 shows the data flow for the package

specification step. A package specification is the interface control document (ICD) for the

Page 21

Design Recover), and Reen¢ineerin_ Methods

package, defining exactly what the rest of the program needs to know about the package, but
no more. Well-defined package specifications allow a multi-person group to work in parallel
on the package implementations.

Figure 6. Data Flow for Package Specification Step

The following activities are performed for each package:

Draw a conceptual line around the package and list all input/output. This includes
parameters to a_ subprograms, COMMON accessed by all subprograms, and calls to
other subprograms. The cross-reference tools identified in section 2 can help in this
analysis. A package may consist of N separate and independent subprograms, each
with its own l_ntefface,bl"N_u_programsina subhierarcqSy, accessed via a single
entry, or a combination of the two. (See figure7.) Note that data passed to
subprogram A must also provide all data for subprograms called by A, unless A
generates the data itself or the data will be provided by a low-level request from some
other package. This means that, for instance, if subprogram A is the entry point for a
package consisting of a group of related subpro_s, it is not suffi_cient to look a t
subprogram A's inputs and outputs: you must also add the inputs and outputs for all
A's subunits. At this point, you are determining what information A and its subunits
need, rather than the intra-module how that is addressed in the implementation step,
which is performed later.

Page 22

Design Recover_ and Reen¢ineerin_ Methods

Specification

I I I I .oo'''oo,'ooI I 0oc'"o='oo:::.::........... I I
:: ::::

I SubprogramBody I I Subpr°gram ::Body] [Subprogram: :::::::: Body I

:i:i_i!i_::_::_:__ _e_::_:_::_e __:e_:_:e:__ u_ _ :r:o_r:a m:s ii!i!i!i!i!i!i!iiiiiiiliiiiiiiliiiiiiiiiliiiiii!!iiiii!ii!ii!iiiiiiiiiiliiiiiiiiiliiiiiiiiiliiiiiiiii{iiiii!i!i!iiiii!iiiiii!iiilililiiiliiiiiiii!iii!:i

_i_i',,: I _°°'''°='°n I I _.oo"'c_t'ooI iiiiiiiiiiiii_

.......... :u:.-

Body] Subprogram _Body ?:'_i'_',i:,'_ii,'_,i

 uooroor- I I oOorooromIBod, Body Bodyiii_'i:ii!iiiiii!i!ii_
. < ,<<+...<...

_i_i_i_i_i_!iii!_!i_iiiiiiiiiiiiiiiiiiiiiiiii_iii.i_iiiiiiiii_ii_i_i_ii_i_i!_!_i_i_i_iii_i_iiiiiii_i_ii_!ii_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_i_!iiiiii.i:._:iiiiiii_iii_i_!_._i_;i_i_ii_iiiiiiiiii_iiiiiiii!ii!ii_iii_:_ii_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiiiii_i!!_!;!i_i_iiiiiii_!_!ii_i_i_i_iiiii!iiiiiiiiiiiiiiiii_iiii!ii_iiiiiiii!_iiiiiii_iiiiiiiii!iiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiiii_i_i

Figure 7. Package Configurations

Determine the mode (IN, OUT, IN OUT) of all input/output. Look at the terms in a

timeline fashion: are they set first or read first? The CREATE processor generates a
table containing this information for all the COMMON variables in a subprogram. Is
the reference conditional?

Write a specification describing the provided subprograms and types. The names for
the provided subprograms and their parameters should be meaningful and thus usually
longer than the original FORTRAN names when possible. In Ada, this will be a
package specification with a prolog describing the package functions. In FORTRAN,
this might be a set of design notes in comment statements. Current FORTRAN does
not syntactically support the equivalent of an Ada specification, but the design notes
should be as complete as an actual Ada specification and should be perceived as being
binding on the implementer. If changes are made, either later during the package
specification or during implementation, the design notes must also be updated.
FORTRAN may be syntactically inferior to Ada in this area, but a good procedure,
followed, can achieve most of the same benefits.

Make notes for later use as to whether a subprogram is an exact translation of a

FORTRAN subprogram, a partial translation where not all the FORTRAN functionality
is necessary, or a new capability. An example is a capability that in the original
FORTRAN was provided by accessing a COMMON variable, but in Ada is provided
by a subprogram to read or write a value.

Page 23

Desisn Recover_ and Reen_ineerin_ Methods
I

Products of the package specification step include the following:

Complete set of specifications that encompass all the functionality of the original
FORTRAN. In Ada, the specifications will be compilable. In C or upgraded
FORTRAN, the completeness and correctness of the written specifications must be
checked manually.

- Mappings of old names to new names for inter-package variables.

- Updates to the design document describing packages in greater detail and describing
interfaces.

- Notes for implementation step.

Complete mapping between original FORTRAN names and new names (for inter-
package communication only) for subprograms, calling parameters, and global
entities.

Notes on which FORTRAN interfaces are to be provided by references in the
package body (e.g., base date and tolerances may not be provided as input
parameters to some packages because the package body will obtain them via

subprogram call to another package).

-- Identification of anything that is not one-to-one from FORTRAN to the target
language.

At the end of the package specification step, there should be a formal review of the design to
date. Ideally the attendees will be the conversion team and a few outside senior personnel to
consider the correctness of the new design (conformance to standards, completeness, etc.).
The conversion team reviews the specifications and the implementation notes.

6.4 Implementation

Step four is the implementation of the package specifications, whether compilable Ada or
procedural FORTRAN or C. It is the most mechanical step of the process _d could be
partially automated by the use of a translator, but there is still a gooddeal ofhu_man
intervention required for several reasons. First, some procedures have been slightly changed,
and others have been added, so the process is not a straightforward one-t_o_e_____slation.
Second, the determination of longer and more meaningful _s-/equires hu_]deci-sions
which can only be assisted by a tool. Third, there will be some poor code in the ofi_al
FORTRAN that an automatic tool, or a translator, would be unable to correct. An example is a

variable that is described one way, but isactually used to Store values With several different

meanings. A tool might_ able to detect this _0b!em but could not correct it.

The implementation step is the mostlanguage de_ndent. "_eb_|c_ntent is similar; but the

details of different target languages will affect the detailed substeps. In this document a
conversion from FORTRAN to Ada is discussed, but the procedure would be different only in

syntactic detail for C or FORTRAN 8x.

Page 24

Design Recover_ and Reengineering Methods

For a given Ada specification the implementation is a package body which starts as a copy of
the specification. The necessary changes are made to the prolog to convert a package
specification to a syntactically correct package body, e.g., PACKAGE -> PACKAGE BODY,
types need not be repeated, WITH]USE need not be repeated, parts of the prolog would be
redundant if repeated.

At this point, two questions arise. Are the visible program units (those declared in the
specification) the only units, or are there more in the package body? (See figure 7.) If there
are more units than the visible ones, another input/output analysis like that in the package

specification step will be required for intra-package communications. Also, will the
functionality change in the conversion? Sometimes the FORTRAN program has redundant
code which will be removed, or new functions will added to update the code.

After any intra-module input/output analysis for internal subprograms has been performed and
rough internal specifications for them have been written, the next step is to begin translation.

Copy the FORTRAN source into the package txxly after the subprogram specification.
Move the FORTRAN comment statements on the purpose and functional description up

to the package or separate unit prolog for later modification.

Go through the FORTRAN and use the CONVERT processor to restructure it using
constructs such as CASE, IF, THEN, ELSE_IF, ELSE, END_IF, etc. (See section

4.2.) The difficulty of this step depends on the quality of the original code. There will
be some cases where early RETURNs are the best way to smacture the code; these
must be noted in the functional description. In general, any deviances from normal

practice should be noted.

Convert FORTRAN syntax to Ada syntax. A translator will automate most of this

activity. The following is a list of examples:

-- Comments from "C" to "--"

-- Add, to end of each statement.

-- Change FORTRAN boolean relationals such as ".EQ." to their Ada equivalents.

rv. ifChange "=" assignments to .=.

Many initialization statements can be replaced by initial values in the data
declarations; because of Ada's elaboration rules this will usually give equivalent
results, but be very careful. Remember that program unit local data is not retained

but data declared in the package body is retained.

Convert to the new Ada data types: for example a FORTRAN Do-loop to assign
one vector to another is now a simple assignment. Another example is records,

especially variant records, that replace several logicaUy-related FORTRAN
variables.

Page 25

Design Recover_ and Reen_ineerin_ Methods

Convert FORTRAN symbols to more meaningful names where possible. Note that
inter-package symbols, i.e., subprogram names, high-level calling parameters, and
many COMMON variables, were already renamed in a previous step. The
implementation step is concerned with intra-package and subprogram-local symbol
names. The CLEANUP processor will be updated to support this activity.

-- Calling parameter names are given in the subprogram specification.

COMMON replacements have several cases. Some COMMON variables will have
been made into calling parameters. Some (constants, tolerances, etc.) are available
either directly or by subprogram call from a different package. Some were used for
communication within what is now a single package, and can be replaced by
parameters to lower subprograms, or by data declarations in the package body. In
most cases, useful long names will have to be generated by investigation unless a
CDB or equivalent in-line comments are available.

In a COMGEN-compatible program, local variables usually have a description in

the subject subprogram's prolog that can be used to derive a new name. If not, and
if investigation does not yield a useful name, the original FORTRAN name may be
retained. Incorrect names can be worse than nothing.

Use project-determined guidelines for the length of names. They should be long
enough to be "meaningful," but not so long that statements run on forever. This is
a judgement call. The data declarations should have comments sufficient to clear up
any ambiguity due to reduced name lengths.

- Convert subroutine/function calls. This is complex since the subprogram parameters

have probably changed: certainly in name, frequently in number, and often in purpose.

- Make esthetic changes (the function of a "pretty printer" or a translator):

-- Spacing as appropriate, especially within equations.

-- Statements should not run-on too many lines (a judgement call).

-- Use a consistent indentation format.

- Go through the code again and attempt to verify that the code makes sense. Update or
correct the comments as understanding permits.

- Update or correct the Purpose/Functional Description in the prolog as your

understanding permits. - _

Make a final pass to compare the FORTRAN totheAda and double-check the
conversion for typos, etc. Take great care with this stage, the possibilities for slip-ups
are endless because of the manu_ nature of the translation. _ovision _d use of tools

to assist in the implementation will alleviate but not remove this require/nent.

The product of the implementation step is compiled packages.

Page 26

Design Recover_ and Reen_ineerin_ Methods

6.5 Unit Testing

In most cases it is necessary only to verify that a given Ada unit performs "identically" to its
FORTRAN forebear, where "identically" is application defined. One way is to write drivers to
invoke both the Ada and FORTRAN units with identical inputs, and to verify that the output
matches. Numeric output must match to the appropriate number of significant digits.

Products of the unit testing step include:

Test cases and results, including comparison to the original FORTRAN.

Design document, updated as necessary.

Reviews should be attended by the conversion staff to check readability and maintainability of
the code, and to verify the conversion. Conversion staff and outside engineers should review
the test cases for correctness and sufficiency.

7.0 METHOD FOR CONVERTING AN ARBITRARY FORTRAN PROGRAM
TO ANOTHER LANGUAGE

Converting an arbitrary FORTRAN program to FORTRAN 8x, Ada, or C does not differ from
converting a COMGEN-compatible FORTRAN program (described in the previous section) in
terms of the required steps. The difference is in the degree of difficulty in performing the
required design recovery. The COMMON data structure of the CDB and the structured
information in the CD statements of a COMGEN-compatible program makes the understanding
of the program easier, and hence enhances the probability of a successful conversion.

The success of the design recovery of an arbitrary FORTRAN program is highly dependent
upon both the quality of the documentation and how well the code was modularized in the
subject program. A well-structured program with good, current in-line comments can be
successfully converted by following the steps in the previous section. However, if a program
has all of its global data in a single structure, it will be harder to identify the data structures. If
a program has each subprogram in a single file, it will be harder to identify modules. If no
documentation is contained in the code in the form of comment statements, it will be very

difficult to identify the purpose of each subprogram. Sometimes this information is provided
in external documents, but these are seldom kept current as a program evolves.

8.0 CONCLUSION

The methods proposed in this volume have been developed with the intent to provide leverage
on the past investments in JSC's FORTRAN programs at a low cost and with a low level of
risk. A vast amount of engineering knowledge is embodied in JSC's existing FORTRAN

programs, but some have become increasingly difficult and expensive to maintain. The
approach presented in this volume is flexible, allowing the management with the responsibility
for the maintenance of software systems to selectively choose which programs to upgrade for

maintainability and to choose the incremental level of maintainability that is affordable.
Maintenance upgrades can be performed incrementally, with improved understandability at
each increment.

Page 27

Design Recover_ and Reengineering Methods

9.0 APPENDIX

The appendix contains brief definitions of the standardized comment statements, tools in the
STB tool set, and data sets created and used by the tools. For further information, the reader is
referred to Automated Software Documentation Techniques (NASA) or Computer Program
Development and Maintenance Techniques (NASA IN 80-FM-55).

9.1 Standardized Comment Statements (CDs)

The following is an annotated list of the standardized comment statements (known as CDs) that

provide in-line documentation in a COMGEN-compatible subprogram.

CD0 Identification.

Documentation on how to reference the subprogram and documentation identifying
those responsible for the subprogram.

CD1 Purpose.

Short documentation of what the subprogram does, not how it does it: topic sentence

describes the module; the rest elaborates the module. If possible, the actual requirement
paragraph(s) allocated to this module.

CD2 Calling Argument Input.

Documents for each input argument the name, dimension, type, length, and definition,
with optional extension for other inputs such as data files.

CD3 Calling Argument Output.

Documents for each output argument the name, dimension, type, length, and definition,
with an optional extension for other outputs such as data files.

CD4 COMMON Variable Definitions.

Defines COMMON block variables; usually inserted automatically by the INSDOC
processor (see following annotated list of STB tools) from definitions in the COMMON
database (CDB). Optional extension for other global data such as data f'des.

CD5 Internal Variables.

Documents for each internal variable in a subprogram the name, dimension, type,

length, definition, with optional extension for other local data such as temporary data
files.

CD6 External References.

Documents external data files, external subprograms referenced, subprogram

referenced by; normally not used because the information can be obtained from

Page 28

Design Recover_ an d Reengineerin_ Methods

RELREF processor (see following annotated list of STB tools) or display of the
ERTAB, the Elements Referenced Table.

CD7 Functional Description and Method.

Documents the logical flow of subprogram in narrative form.

CD8 Assumptions and Limitations.

Documents major assumptions and limitations inherent in the subprogram.

CD9 Special Comments.

Documents any additional information not included in other structures.

CD10 References.

Provides references to formal external documentation and references to other related

subprograms (i.e., See also).

CDll Keywords.

List keywords that describe the subprogram, to be used in library search for
subprogram.

9.2 Tool Set

The following is an annotated list of the existing STB tool set that supports design recovery
and reengineering and are referenced in the volumes that make up this document. After this list
of tools the contents of the data sets that these tools generate and use are identified.

AUTODOC Automatic Subprogram Documentation Processor.

Generates subprogram documentation for a subprogram based on
documentation comment statements (i.e., CD statements) in the source code and
information on that subprogram that is in the data sets CDB, SCVTAB,
EPETAB, EPTAB, ERBTAB, ERTAB, PETAB, ERTAB, DEPTAB.

CAUDIT Code Auditor.

Checks adherence to the coding standards of the mission planning and analysis
domain at JSC and checks spelling in the standard comment blocks using the
CDB data set.

CCREF COMMON Block Cross-Reference Program.

Generates the following displays to provide a complete picture of the

COMMON structure of the program:
- Names of every COMMON block in each subprogram of the program.

Page 29

Design Recove_ and Reen_ineerin_ Methods

CLEANUP

COMPARE

CONVERT

CREATE

DDT

DEFINE

DEPCHT

DISPLAY

- Names of variables in each location of every COMMON block and
subprograms that the variable is in.

- For each master array in a COMMON, names of common variables that are
equivalenced to each location of that array.

- Inverse of each of the three previous displays.

Cleanup Processor.

Performs source code cleanup operations to help the programmer/analyst to
make the code more understandable, more maintainable, and compliant with the
standards of the mission planning and analysis domain at JSC. This includes
standardizing the documentation statements (CDs), specification statements,
control structure; renaming variables and COMMON locations; and inserting
new EQUIVALENCES to COMMON.

Symbolic File and Element Comparison Processor.

Displays differences between two source code elements or two of the special
data sets used by the STB tool set in form of alters of f'u'st fide to make it match
second.

Conversion Processor.

Used for conversion operations to be performed on source code elements.

Database Creation Processor.

Fully creates some data sets used by the STB tool set, builds data set with fields
blank for others. Data sets that can be requested: CDB, CVTAB, SCVTAB,
ERTAB, ERBTAB, EPTAB, EPETAB, SCBTAB, CBSTAB,PETAB.

Detailed Debug Trace Program.

Analyzes source code and generates compiled version containing print
statements for tracing execution.

Documentation Definition Processor.

Supports the insertion of standardized in-line documentation by creating CD
statements and CDB variable definitions.

Dependency Chart Generator.

Displays the program structure by drawing a series of hierarchy charts that
show the subprogram calling flow for the program or a designated subset of the

program using the ERTAB and DEPTAB data sets.

Data Set Display Processor.

Page 30

Design Recover_ and Reen_ineerin_ Methods

DOCGEN

DSDGEN

FORREF

INSDOC

INVERT

MANGEN

MAZE

MERGE

OMNIBUS

Creates labeled displays of the following data sets in a format suitable for
documentation: CBSTAB, CDB, CVSTAB, CVTAB, DEPTAB, EPETAB,
EPTAB, ERBTAB, ERTAB, KEYTAB, PETAB, SCBTAB, SCVTAB.

Document Generator.

Processes ASCII source files with, page numbering, labeling capability, and
some of the word-wrap features of a word processor.

Data Structure Definition Processor.

Previews a data structure that is to be placed into a larger document being built

by the DOCGEN processor, also build CD statements if the proper option is
selected.

FORTRAN Cross-Reference Display Processor.

Analyzes a FORTRAN subprogram, generating displays of all the line numbers
where each symbol and statement number is referenced.

COMMON Variable and Keyword Documentation Insertion Processor.

Inserts the COMMON variable definitions (CD4) and inserts key word
statements (CDll) from the CDB into the allocated place in the subprogram

prolog.

Data Set Inverter.

Inverts the following data sets: ERTAB/ERBTAB, SCBTAB/CBSTAB,
SCVTAB/CVSTAB.

Unix Manual Generator.

Generates a Unix on-line manual entry from CD statements in the main routine

of a program.

Memory Map Analyzer.

Displays the memory map of a program in a readable format, filtering out
system routines.

File Merge Processor.

Merges two data sets into one, using CDB, DEPTAB, and PETAB.

Omnibus Element Processor.

Converts certain symbol data sets into omnibus elements, which are in turn

used by various other processors as part of their input.

Page 31

Design Recover_ and Reen_ineerin_ Methods
IIII I I

QUERY

_L_F

SCANPF

SETGEN

SPECPN

SUBDOC

TABLES

TOCGEN

UPDATE

Query Processor.

Allows the user in an interactive mode to search a large data set for individual
records using omnibus versions of the following data sets: CBSTAB, CDB,
CVSTAB, EPTAB, ERBTAB, ERTAB, SCBTAB.

Relocatable Element Cross-Reference Program.

Displays lists of the subprograms called by each subprogram in a program file
and also a listing of the subprograms that call each subprogram of the file.

Control Script Generator.

Generates the control script needed to run repeated executions of any of the
other tools against groups of routines.

Dependent Element Set Generator.

Generates a list of the names of all subprograms used by a specified routine
including those called by routines that it calls, using the data sets EPETAB,
ERTAB.

Common Variable Specification Statement Generation Processor.

Restructures the COMMON in a program so that it is converted to the desired
structure defined by the CDB, using the data sets CDB and SCVTAB.

Subprogram Documentation Processor.

Generates a document containing the purpose of each subprogram in program
(taken from the CD 1 statements), using the data sets PETAB and KEYTAB.

Tables Processor.

Subset of DOCGEN, generates tables within a document.

Table of Contents (TOC) Generator.

Generates a table of contents display of the elements in a Unisys program file or

the fries in a UNIX directory, or compares table of contents for two directories.

Database U_te Processor.

Updates (inserts, deletes, renames, or modifies) an existing data set, using
CDB and PETAB.

Page 32

Desii_n Recove_ and Reen¢ineerin_ Methods

VERIFY Database Verification Processor.

Performs verification procedures on some of the data sets.

9.3 Data Sets

The data sets that are used by the STB's tool set can be grouped into three categories:
COMMON block data sets, documentation data sets, and program structure data sets. The
following list is grouped by category identifying the data set contents that are used by the
STB's tools that are referenced in the volumes of this document.

COMMON Block Data Sets:

CDB COMMON Database

CVSTAB COMMON Variable versus Subprogram Table

CVTAB COMMON Variable Table

SCBTAB Subroutine versus COMMON Block Table

SCVTAB Subprogram COMMON Variable Table

Program $a'u¢_ure Data Sets

CBSTAB COMMON Block versus Subprogram Table

DEPTAB Dependency Table

EPETAB Entry Point versus Element Table

EPTAB Program versus Entry Point TAble

ERBTAB Elements Referenced by Table

ERTAB Elements Referenced Table(External Reference Table)

Documentation Data Sets

KEYTAB Keyword Table

PETAB Program Element Table

Page 33

Design Recover_ and Reensineerin 8 Methods

10.0 GLOSSARY

Acronyms:

CASE

CD

CDB

COTS

FADS

ICD

JSC

MOD

MPAD

MSD

STB

Terms:

arbitrary FORTRAN

COMGEN-compatlble

Computer aided software engineering.

CD statement, the in-line documentation standard in the mission

planning and analysis domain. For further information, the
reader is referred to Computer Program Development and
Maintenance Techniques, NASA IN 80-FM-55.

COMMON database of a program meeting the standard
COMMON concept in the mission planning and analysis
domain; primary documentation of a FORTRAN program's
COMMON structure; used by many of the STB's tools. For
further information, the reader is referred to Computer Program

Development and Maintenance Techniques, NASA IN 80-FM-
55.

Commercial-off-the-shelf.

Flight Analysis and Design System.

Interface control document.

Johnson Space Center.

Mission Operations Directorate.

Mission Planning and Analysis Division, a former division at
JSC.

Mission Support _torate, a former _ctorate at JSC.

Software Technology Branch.

FORTRAN program that is not compatible with the COMGEN
standards long in place for JSC's mission planning and analysis
domain.

FORTRAN program that is compatible with the COMGEN
standards long in place for JSC's mission planning and analysis
domain. For further information, the reader is referred to

Computer Program Development and Maintenance Techniques,
NASA IN 80-FM-55.

Page 34

Design Recover_ and Reen[ineerin¢ Methods

COMMON database

Common variable

design recovery

environment

framework

FORTRAN 77

FORTRAN 8x

forward engineering

master array

package

re.engineering

reverse engineering

COMMON database of a program meeting the standard
COMMON concept in the mission planning and analysis
domain; primary documentation of a FORTRAN program's
COMMON structure; commonly referred to as the CDB; used by
many of the STB's tools. For further information, the reader is
referred to Computer Program Development and Maintenance
Techniques, NASA IN 80-FM-55.

In a COMGEN-compliant program, variables equivalenced to
locations in a master array.

Reverse engineering, the first step for maintenance or

reengineering.

Instantiation of a framework, i.e., an integrated collection of

tools, that supports one or more methodologies.

Software system to integrate both the data and the control of new
and existing tools; usual components include a user interface,
object management system, and a tool set.

ANSI standards for FORTRAN in effect in 1990.

Future ANSI standards for FORTRAN; expected to be approved
and released soon; draft standards have been circulated;

unofficially referred to as FORTRAN 90.

Process of developing software from "scratch," through the
phases of requirements, design, and coding.

In a COMGEN-compliant program, the only variables that
appear in a COMMON statement.

"A collection of logically related entities or computational
resources" (Booch).

"The examination and alteration of a subject system to
reconstitute it in a new form and the subsequent implementation
of the new form" (Chikofsky and Cross); combination of

reverse engineering and forward engineering.

"The process of analyzing a subject system to identify the
system's components and their interrelationships and create
representations of the system in another form or at a higher level
of abstraction" (Chikofsky and Cross); the fin'st step for
maintenance or reengineering; reverse of forward engineering;

process of starting with existing code and going backward
through the software development life cycle.

Page 35

Design Recover_ and Reen(lineerin _ Methods

software maintenance

subject program

x-option

virtual package

Process of modifying existing operational software while
leaving its primary functions intact (Boehm, 1980).

Program that is being maintained or reengineered.

Reference to a mechanism of using a letter on the execute
statement to indicate the control path to be followed in the
execution of a program or processor, used by the Unisys, Unix,
and DOS operating systems.

Package concept as defined by Booch, but implemented either in
Ada, which enforces the concept, or in a language in which the
concept must be supported procedurally.

_L

Page 36

Design Recover_ and Reen¢ineerin_ Methods

10.0 REFERENCES

Boehm, B. W., Software Engineering Economics, Englewood Cliffs, NJ: Prentice-Hall, 1981

Booch, Grady, Software Engineering with Ada, Menlo Park, CA: Benjamin/Cummings
Publishing Co., Inc., 1983.

Booch, Grady, Software Components with Ada, Menlo Park, CA: Benjamin/Cummings
Publishing Co., Inc., 1987.

Braley, Dennis, Computer Program Development and Maintenance Techniques, NASA IN 80-
FM-55, Houston, TX: NASA Johnson Space Center, November 1980.

Braley, Dennis, Automated Software Documentation Techniques, NASA, Houston, TX:
NASA Johnson Space Center, April 1986.

Braley, Dennis, Software Development and Maintenance Aids Catalog, NASA IN 86-FM-27,
Houston, TX: NASA Johnson Space Center, October 1986.

Braley, Dennis, "A Software Recovery Methodology," unpublished internal document,
Houston, TX: NASA Johnson Space Center, FR51, January 1990.

Braley, Dennis, "FORTRAN Standards for Future Translation and/or Design Recovery,"
unpublished internal document, Houston, TX: NASA Johnson Space Center, FR51, January
1990.

Braley, Dennis and Allan Plumb, "An Environment for Software Conversion and Code
Recovery," unpublished internal document, Houston, TX: NASA Johnson Space Center,
FR51, March 1990.

Braley, Dennis, Maintenance Strategies for Design Recovery and Reengineering : FORTRAN
Standards, Volume 2, Houston, TX: NASA Johnson Space Center, June 1990.

Braley, Dennis and Allan Plumb, Maintenance Strategies for Design Recovery and
Reengineering: Concepts for an Environment, Volume 4, Houston, TX: NASA Johnson
Space Center, June 1990.

Chikofsky, Elliot J. and James H. Cross II, "Reverse Engineering and Design Recovery: A
Taxonomy," IEEE Software, January 1990.

Clark, Robert G., Programming in Ada: A First Course, Cambridge: Cambridge University
Press, 1985.

Constantine, Larry L., "Objects, Functions, and Program Extensibility," Computer Language,

January 1990.

Fridge, Ernest M., Maintenance Strategies for Design Recovery and Reengineering : Executive
Summary and Problem Statement, Volume 1, Houston, TX: NASA Johnson Space Center,
June 1990.

Page 37

Design Recover_ and Reen¢ineerin_ Methods

George, Vivian and Allan Plumb, A Method for Conversion of FORTRAN Programs,
Houston, TX: Barrios Technology, Inc., January 1990.

Page 38

